30V N-Channel Power MOSFET | Parameter | Value | Unit | |--|-------|------| | $V_{ extsf{DSS}}$ | 30 | V | | R _{DS(ON) max.} V _{GS} =10V | 38 | mΩ | | R _{DS(ON) max.} V _{GS} =4.5V | 46 | mΩ | | R _{DS(ON) max.} V _{GS} =2.5V | 60 | mΩ | | ID | 4.8 | Α | | Qg | 5.3 | nC | | Q _{gd} | 1.5 | nC | | Q _{SW} | 2 | nC | | Features | Application | | | | |---|-----------------------------------|--|--|--| | Low On-Resistance | Motor / Body Load Control | | | | | Low Input Capacitance | Automotive Systems | | | | | Low Miller Charge | Load Switch | | | | | Fully Characterized Capacitance and Avalanche | DC-DC converters and Off-line UPS | | | | | Pb-free lead plating; RoHS compliant | | | | | **Ordering Information** | Ordering Code | RoHS Status | Package | Package Code | Packing | Quantity | |---------------|--------------|---------|--------------|-------------|----------| | SGN3055V | Halogen-Free | SOT-23S | V | Tape & Reel | 3,000 | Absolute Maximum Ratings (T_J=25°C unless otherwise noted) | | Symbol | Value | Unit | | |--------------------------------------|---------|-----------------|------------|----| | Drain-Source Voltage | | V _{DS} | 30 | V | | Gate-Source Voltage | | V _{GS} | ±12 | V | | Drain Compart Continuous Note 1 | Ta=25°C | | 4.8 | Α | | Drain Current-Continuous Note 1 | TA=70°C | I _D | 3.9 | Α | | Drain Current-Pulsed Note 2 | Ta=25°C | I _{DM} | 19.2 | Α | | Avalanche Current | | I _{AR} | 10 | Α | | Single Pulse Avalanche Energy Note 3 | | Eas | 5 | mJ | | Maximum Dower Dissipation | TA=25°C | D- | 1.4 | W | | Maximum Power Dissipation | Ta=70°C | P _D | 0.9 | W | | Operating and Storage Temperature F | lange | TJ, TSTG | -55 to 150 | °C | **Thermal Resistance Ratings** | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Unit | |---|--------|--------------|------|------|-------|------| | Thermal resistance, Junction-to-Ambient | RөJA | Steady State | - | - | 87.97 | °C/W | | Thermal resistance, Junction-to-Case Note 4 | Resc | Steady State | - | - | 29.25 | °C/W | #### Notes: - 1. Limited by silicon chip capability and junction-to-ambient thermal resistance. - 2. Must be ensure junction temperature does not exceed 150-degree C. (Pulse Width \leq 100uS, Duty \leq 2%) - 3. Limited by T_{Jmax} , starting T_{J} =25°C, L=0.1mH, R_{g} =25 Ω , I_{D} =10A, V_{GS} =10V. - 4. R_{BJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{BJA} is guaranteed by design while R_{BJA} is determined by the user's board design. R_{BJA} shown below for single device operation on FR-4 in still air. 30V N-Channel Power MOSFET #### Electrical Characteristics (T_J=25°C unless otherwise noted) | STATIC CHARACTERISTICS | | | | | | | |---------------------------------|----------------------|--|------|------|------|------| | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Unit | | Drain-Source Breakdown Voltage | V _{(BR)DSS} | V _{GS} =0V, I _{DS} =250μA | 30 | - | - | V | | Zero Gate Voltage Drain Current | , | V _{DS} =30V, V _{GS} =0V | - | - | 1 | μΑ | | | I _{DSS} | V _{DS} =30V, V _{GS} =0V, T _J =125°C | - | - | 100 | μA | | Gate-Body Leakage | Igss | V _{GS} =±12V, V _{DS} =0V | - | - | ±100 | nA | | STATIC CHARACTERISTICS | | | | | | | | |----------------------------------|---------------------|---|------|------|------|------|--| | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Unit | | | Gate Threshold Voltage | V _{GS(TH)} | V _{DS} =V _{GS} , I _{DS} =250µA | 0.5 | 0.7 | 1.2 | V | | | Drain-Source On-State Resistance | RDS(ON) | V _{GS} =10V, I _{DS} =4A | - | 30 | 38 | mΩ | | | Drain-Source On-State Resistance | RDS(ON) | V _{GS} =4.5V, I _{DS} =3A | - | 34 | 46 | mΩ | | | Drain-Source On-State Resistance | R _{DS(ON)} | V _{GS} =2.5V, I _{DS} =2A | - | 41 | 60 | mΩ | | | Gate Resistance | R_g | V _{GS} =0V, V _{DS} =0V, f=1MHz | - | 0.4 | | Ω | | | Forward Transconductance | g fs | V _{DS} =5V, I _{DS} =2A | - | 4.7 | - | S | | | DYNAMIC CHARACTERISTICS | | | | | | | | |------------------------------|---------------------|---|------|------|------|------|--| | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Unit | | | Input Capacitance | Ciss | V _{DS} =25V, V _{GS} =0V, f=1MHz | - | 334 | - | pF | | | Output Capacitance | Coss | V _{DS} =25V, V _{GS} =0V, f=1MHz | - | 33 | - | pF | | | Reverse Transfer Capacitance | C _{rss} | V _{DS} =25V, V _{GS} =0V, f=1MHz | - | 31 | - | pF | | | Turn-On Delay Time | T _{d(on)} | V_{DS} =15V, V_{GS} =10V, I_{DS} =1A, R_{GEN} =3 Ω | - | 4 | - | ns | | | Rise Time | t r | V_{DS} =15V, V_{GS} =10V, I_{DS} =1A, R_{GEN} =3 Ω | - | 2 | - | ns | | | Turn-Off Delay Time | T _{d(off)} | V_{DS} =15V, V_{GS} =10V, I_{DS} =1A, R_{GEN} =3 Ω | - | 14 | - | ns | | | Fall Time | t _f | V_{DS} =15V, V_{GS} =10V, I_{DS} =1A, R_{GEN} =3 Ω | - | 2 | - | ns | | | GATE CHARGE CHARACTERISTICS | | | | | | | | |--|----------------------|--|---|------|------|------|--| | Parameter | Symbol | Symbol Conditions | | Тур. | Max. | Unit | | | Gate to Source Gate Charge | Qgs | V _{DD} =15V, I _D =3A, V _{GS} =0 to 4.5V | - | 0.9 | - | nC | | | Gate charge at threshold | $Q_{g(th)}$ | V_{DD} =15V, I_{D} =3A, V_{GS} =0 to 4.5V | - | 0.4 | - | nC | | | Gate to Drain Charge | Q_{gd} | V _{DD} =15V, I _D =3A, V _{GS} =0 to 4.5V | - | 1.5 | - | nC | | | Switching charge | Qsw | V _{DD} =15V, I _D =3A, V _{GS} =0 to 4.5V | - | 2 | - | nC | | | Gate charge total | Q_g | V_{DD} =15V, I_{D} =3A, V_{GS} =0 to 4.5V | - | 5.3 | - | nC | | | Gate charge total | Q_g | V _{DD} =15V, I _D =3A, V _{GS} =0 to 2.5V | - | 2.2 | - | nC | | | Gate plateau voltage | V _{plateau} | V _{DD} =15V, I _D =3A, V _{GS} =0 to 4.5V | - | 1.8 | - | V | | | Gate charge total, sync. FET (Q _g - Q _{gd}) | Qg(sync) | V _{DS} =0.1V, V _{GS} =0 to 4.5V | - | 3.8 | - | nC | | | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Unit | |---|-----------------|---|------|------|------|------| | Diode continuous forward current (Body Diode) | Is | Ta=25°C | - | - | 4.8 | Α | | Diode pulse current (Body Diode) | Ism | TA=25°C | - | - | 19.2 | Α | | Diode Forward Voltage | V _{SD} | V _{GS} =0V, I _S =1A | - | 0.7 | 1 | V | | Body Diode Reverse Recovery Time | trr | V _{DD} =15V, I _F =3A, di/dt=200A/µs | - | 8.9 | - | ns | | Body Diode Reverse Recovery Charge | Qrr | V _{DD} =15V, I _F =3A, di/dt=200A/µs | - | 6.2 | - | nC | 2 30V N-Channel Power MOSFET #### **Typical Operating Characteristics** #### 30V N-Channel Power MOSFET #### **Typical Operating Characteristics (Cont.)** # SGN3055V 30V N-Channel Power MOSFET #### **Typical Operating Characteristics (Cont.)** #### **Marking Information** #### Year Code / Week Code Description | Year Code | Ye | ar | |-----------|------|------| | 0 | 2010 | 2020 | | 1 | 2011 | 2021 | | 2 | 2012 | 2022 | | 3 | 2013 | 2023 | | 4 | 2014 | 2024 | | 5 | 2015 | 2025 | | 6 | 2016 | 2026 | | 7 | 2017 | 2027 | | 8 | 2018 | 2028 | | 9 | 2019 | 2029 | | Week Code | Week | | Week Code | We | ek | |-----------|------|----|-----------|----|----| | Α | 1 | 2 | N | 27 | 28 | | В | 3 | 4 | 0 | 29 | 30 | | С | 5 | 6 | Р | 31 | 32 | | D | 7 | 8 | Q | 33 | 34 | | E | 9 | 10 | R | 35 | 36 | | F | 11 | 12 | S | 37 | 38 | | G | 13 | 14 | Т | 39 | 40 | | Н | 15 | 16 | U | 41 | 42 | | I | 17 | 18 | V | 43 | 44 | | J | 19 | 20 | W | 45 | 46 | | K | 21 | 22 | Х | 47 | 48 | | L | 23 | 24 | Y | 49 | 50 | | M | 25 | 26 | Z | 51 | 52 | #### Soldering Methods for Silicongear's Products - 1. Storage environment: Temperature=10°C to 35°C Humidity=65%±15% - 2. Reflow soldering of surface-mount devices | Profile Feature | Sn-Pb Eutectic Assembly | Pb-Free Assembly | |--|-------------------------|------------------| | Average ramp-up rate (T _L to T _P) | <3°C/sec | <3°C/sec | | Preheat | | | | - Temperature Min (Ts _{min}) | 100°C | 150°C | | - Temperature Max (Ts _{max}) | 150°C | 200°C | | - Time (min to max) (ts) | 60 to 120 sec | 60 to 180 sec | | Tsmax to T _L | | | | - Ramp-up Rate | <3°C/sec | <3°C/sec | | Time maintained above: | | | | - Temperature (T _L) | 183°C | 217°C | | - Time (t _L) | 60 to 150 sec | 60 to 150 sec | | Peak Temperature (T _P) | 240°C +0/-5°C | 260°C +0/-5°C | | Time within 5°C of actual Peak | 10 to 30 sec | 20 to 40 sec | | Temperature (t₂) | 10 (0 30 580 | 20 to 40 Sec | | Ramp-down Rate | <6°C/sec | <6°C/sec | | Time 25°C to Peak Temperature | <6 minutes | <8 minutes | 3. Flow (wave) soldering (solder dipping) | Products | Peak Temperature | Dipping Time | |------------------|------------------|--------------| | Pb devices. | 245°C ±5°C | 5sec ±1sec | | Pb-Free devices. | 260°C +0/-5°C | 5sec ±1sec | ### **Important Notice** #### © Silicongear Corporation ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Silicongear cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an Silicongear product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied. Silicongear Corporation, its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Silicongear"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Silicongear makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Silicongear disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Silicongear's knowledge of typical requirements that are often placed on Silicongear products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Silicongear's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Silicongear products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Silicongear product could result in personal injury or death. Customers using or selling Silicongear products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Silicongear and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Silicongear or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Silicongear personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Silicongear. Product names and markings noted herein may be trademarks of their respective owners. 8 Silicongear and the Silicongear logo are trademarks of Silicongear Corporation. All other brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.